
Core Autonomous Safety Software (CASS)
Operational Release (OR) Comparison

Jeffrey Cherry (SLD 30 SEAE)
jeffrey.cherry.1@spaceforce.mil

Cass Russett (SLD 30 SEAE)
richard.russett@spaceforce.mil

mailto:jeffrey.cherry.1@spaceforce.mil
mailto:richard.russett@spaceforce.mil

Bottom Line ...

Which CASS Operational Release should I use?
CASS OR3

Why?
1 Errors/deficiencies in OR1 and OR2 are corrected.
2 Selectable vacuum IP or drag-corrected IP.
3 Drag-corrected IP configurable per-region.
4 Utilize host vehicle data via vehicle sensor.
5 Define new tracking sensor variables.
6 User-defined computations.
7 Built-in functions.
8 Three-way tables.
9 Efficient moving boundaries.

10 Real-time Green Time rule.
11 Support tool enhancements.

Jeffrey Cherry & Cass Russett CASS OR Comparison 2 / 47

Pros and Cons ...
CASS OR1 Update 01

Traceable, rule-based evaluation of
safety criteria.
Fast vacuum impact point computation.
Contains known errors; longitude range
violation and table reuse error.
Need to duplicate Mission Rules to apply
same rule to each sensor.
Voting creates additional rules, with
large complex expressions.
Limited to ARM/DESTRUCT command
and DISABLE FTS command.
Each Mission Rule is tied to one
command; rule results cannot be shared
between commands.
DISABLE FTS command state not
accessible via API function. Must be
retrieved from database.
Large API; 35 functions. Mix of mission
and database functions; poor cohesion.
Exorbitant waste of memory for strings.
Use of moving gates is not
recommended.
“Primary” sensor notational convenience
is often mistaken with “best” sensor.
Frame data evaluated for only one
sensor.

CASS OR2
Traceable, rule-based evaluation of
safety criteria.
Fast vacuum impact point computation.
Rule templates. Major simplification in
writing rules.
Complete voting system. Major
simplification in writing rules.
Separation of rules and decisions. Rules
no longer tied to commands.
Extensible command system; multiple
commands triggered independently.
New rules section for staging events.
Frame data computed for each sensor.
Data interface separated from API; API
reduced to 20 functions.
Data interface capabilities expanded.
Dynamic boundaries and static gates.
New sensor data items.
Contains known errors; table reuse error
and violation of two requirements.
Dynamic boundary movement
computation is inefficient.
Dynamic boundary definition in Mission
Rules is overly-complicated and
disjointed.

CASS OR3
Traceable, rule-based evaluation of
safety criteria.
Fast vacuum impact point computation.
Drag-corrected impact point computed
in user-defined regions with
user-definable per-region tuning
parameters, wind models, and
atmosphere models.
User-defined drag models and drag
model switching conditions.
Selectable impact computation; vacuum
impact only provides OR2 computational
speed.
User-defined computations per rule: copy
database values; call user-defined table
functions; call built-in utility functions.
User-defined tracking sensor variables.
New vehicle data interface with
user-defined ingestible data items.
Improved dynamic boundary movement
computations.
Uncomplicated dynamic
boundary definitions.
Real-time boundary
dependent Green Time Rule.
. . . and more!

Jeffrey Cherry & Cass Russett CASS OR Comparison 3 / 47

Section/Subsection Hyperlinks, Part 1

1 CASS OR1
Vacuum Impact Point Algorithm Deficiency
Longitude Bound Error Over Anti-Meridian
Same Table Referenced Multiple Times
Flight Software Highlights
Wrapper Responsibilities
Mission Rules File
MissionRules Section of Mission Rules File
Conditional Expressions

Jeffrey Cherry & Cass Russett CASS OR Comparison 4 / 47

Section/Subsection Hyperlinks, Part 2

2 CASS OR2
Longitude Bound Error Over Anti-Meridian
Noncompliance with requirements CASS-SRS-0949 and CASS-SRS-1075
Inconsistency in Gate Rule Processing
Flight Software Highlights
Static Gates and Dynamic Boundaries
Template Rules and Complete Voting System
Extensible Commands
Separation of Rules and Decisions
Memory, Reference Frames, New Data Items, and Data Interface

Jeffrey Cherry & Cass Russett CASS OR Comparison 5 / 47

Section/Subsection Hyperlinks, Part 3

3 CASS OR3
Unnecessary Include File
Incorrect Stream Length
Inconsistency in Gate Rule Processing
Flight Software Highlights
Drag-Corrected Impact Point Estimate
Enhanced Computational Capabilities
Sensor-Related Changes
Persist Attribute Removed
Dynamic Boundaries
Real-Time Boundary-Dependent Green Time Rule
Miscellaneous

Jeffrey Cherry & Cass Russett CASS OR Comparison 6 / 47

CASS Operational Release 1 (OR1)

Known Error
A known deficiency within the vacuum impact point algorithm is that invalid impact points can
be computed when the vehicle location is below the geoid surface (i.e., at negative altitude) and
the apogee never exceeds the geoid surface.

Outcome
Work-Around: Add a condition in Mission Rules to verify height is above the geoid surface for
rules dependent on an impact point. If height is at or below the geoid surface, use the present
position rather than impact position for the rule.
Correction: The vacuum impact point algorithm was enhanced to locate the impact point at
the geoid surface above the vehicle location when both vehicle position and apogee position are
below the geoid surface. SpaceX requested the enhanced code and was provided CASS OR1
Update 01 in March 2016. After passing delta IV&V, unit testing, and formal testing, CASS
OR1 Update 01 Flight Software was recommended for use in safety critical applications.

Jeffrey Cherry & Cass Russett CASS OR Comparison 7 / 47

CASS Operational Release 1 (OR1)

Known Error
When a computed vacuum impact point estimate begins falling on one side of the anti-meridian
and impacts on the other side of the anti-meridian, the computed impact longitude could exceed
the -180° to +180° range. The longitude value is correct, just outside the “normalized” range.

Outcome
Impact is Mission Rule dependent and only for missions expecting to cross the anti-meridian.
SLD 30 can provide corrected code on request, but recertification of the revised CASS Flight
Software is the responsibility of the user.

Jeffrey Cherry & Cass Russett CASS OR Comparison 8 / 47

CASS Operational Release 1 (OR1)

Known Error
When a mission rule references the same table multiple times, the first reference to the table will
produce correct results while subsequent references to the same table may produce invalid
results.

Outcome
Create duplicate tables rather than use the same table multiple times. SLD 30 can provide
corrected code on request, but recertification of the revised CASS Flight Software is the
responsibility of the user.

Jeffrey Cherry & Cass Russett CASS OR Comparison 9 / 47

CASS Operational Release 1 (OR1)
CASS OR1 Flight Software Highlights

Original release was certified in July 2015.

Update 01 certification effort, funded by Range User, completed in 2016.

Original release and Update 01 are 13,460 Source Lines Of Code (SLOC).

Conforms to C++ 2003 and C++ 2011 language standards.

CASS Flight Software provides an operational database and execution
environment for a “Mission Rules” script, driven by ingesting real-time
data from range tracking sensors.

CASS Flight Software computes vacuum instantaneous impact predictions
for each tracking sensor, among many other data items.

Single flight termination command controlled by Terminate class rules.

Single FTS disable database flag controlled by Safing class rules.

Flight termination command timing defined in Settings section.

Reference frame computations apply to a “primary” sensor only.

Jeffrey Cherry & Cass Russett CASS OR Comparison 10 / 47

CASS Operational Release 1 (OR1)

Wrapper Responsibilities
Control MDL storage location and access protocol.

Create an MDL_Tree object with wrapper-controled access to MDL content.

Use MDL_Tree object to create CASS Flight Software Master object.
Master object will:

I Read MDL content via wrapper-controlled access function.
I Validate MDL load using 16-bit CRC.
I Validate MDL based on format and content.
I Establish an execution environment for MDL contents.
I Provide status to wrapper of Master object creation process.

Register tracking sensors with Master object by providing access to each
tracking sensor’s data area.

Retrieve health and status information from Master object for load
verification and assurance checks.

Jeffrey Cherry & Cass Russett CASS OR Comparison 11 / 47

CASS Operational Release 1 (OR1)

Wrapper Responsibilities (Continued)
Initiate hazardous operations via Master object built-in test function.

Initiate rule processing via Master object logic enable function.

Provide Master object with dual hardware discrete logic flags indicating
when liftoff occurs.

Cyclically call Master object Update function.

Retrieve messages after Update function completes.

Retrieve command states (ARM, DESTRUCT) from Master object
functions.

Retrieve the haveRulesSafed flag from Master object database.

Output telemetry data items.

Initiate appropriate action, if any.

Jeffrey Cherry & Cass Russett CASS OR Comparison 12 / 47

CASS Operational Release 1 (OR1)

Mission Rules File
Extensible Markup Language (XML) file conforming to Range Safety
Operations Markup Language (rsoML) Schema Definition.
Composed of 10 major sections:

I Mission: Defines mission name, date, launch point.
I UserDefines: Create named floating point variables.
I Settings: Define mission parameters.
I NavSensors: Define tracking sensors, qualify logic, and priority list.
I Stages: Define thrust/burnout event pairs.
I ReferenceFrames: Define origins for reference frames.
I Boundaries: Define static boundaries and their vertices.
I Tables: Define one-way or two-way linear interpolation functions.
I MissionRules: Define both termination and safing criteria.
I StreamSets: Define telemetry output data items.

Jeffrey Cherry & Cass Russett CASS OR Comparison 13 / 47

CASS Operational Release 1 (OR1)

MissionRules Section
List of rules.
Three different types of rules:

I GenericRule: Contains an ApplyWhen conditional expression and an
optional class-specific conditional expression.

I GateRule: Contains an ApplyWhen conditional expression, an optional
class-specific conditional expression, a reference point (latitude and
longitude of vehicle subpoint or estimated impact point), and static
gate definition (gate endpoint locations, trip mode, and cross persit).

I MapBoundaryRule: Contains an ApplyWhen conditional expression, an
optional class-specific conditional expression, a reference point (latitude
and longitude of vehicle subpoint or estimated impact point), and the
name of a reference boundary defined in the Boundaries section.

Jeffrey Cherry & Cass Russett CASS OR Comparison 14 / 47

CASS Operational Release 1 (OR1)

MissionRules Section (Continued)
Two different classes of rules:

I Terminate: Defines flight termination via a FireWhen conditional
expression.

I Safing: Defines FTS safing via a SafeTerminateRulesWhen
conditional expression.

Any rule may contain an optional Tables section.
I A list of user-defined table function calls.
I Functionally equivalent to r = f (a) or r = f (a, b) for one-way tables

and two-way tables, respectively.
I Table name (i.e., f ()) must be defined in the Tables section.
I Inputs (i.e., “a” or “a, b”) must be floating point database variables or

constants.
I Output (i.e., r) must be a floating point database variable.
I Gate endpoint coordinates may be redefined via a table call.

A feature called a moving gate.

Jeffrey Cherry & Cass Russett CASS OR Comparison 15 / 47

CASS Operational Release 1 (OR1)

Conditional Expressions
Boolean conditions are enclosed within
<cond> term operator term </cond> elements.
Terms are integer, floating point, time, or Boolean variables or
constants defined in the database.
Terms in a Boolean condition must be type identical; two integers,
two floating point, two times, or two Boolean values.
For integer, floating point, or time conditional expressions, the HTML
less than (<) or HTML greater than (>) operators must be
used.
For Boolean conditional expressions, the “is” operator must be used
(<cond> flag is false </cond>).
Boolean conditional expressions may use the negation
element (<not> flag is true </not>).

Jeffrey Cherry & Cass Russett CASS OR Comparison 16 / 47

CASS Operational Release 1 (OR1)

Conditional Expressions (Continued)
Compound Boolean conditions can be created using either <and/> or
<or/> operators.
Boolean conditions may be nested within <cond> …</cond> elements.
The simple majority <vote> operator can be used to vote over
multiple Boolean conditions, such as:
<vote>

<cond> GpsA.accelTotal < 4.0 </cond>
<cond> GpsB.accelTotal < 4.0 </cond>
<cond> ImuA.accelImuX < 4.0 </cond>

</vote>

Jeffrey Cherry & Cass Russett CASS OR Comparison 17 / 47

CASS Operational Release 1 (OR1)

Conditional Expressions (Continued)
Conditional expressions are used in the following:

I QualifyLogic expressions used when defining a tracking sensor within
the NavSensors section.

I IgnitionLogic expressions used when detecting a thrust event for a
Stage definition within the Stages section.

I BurnoutLogic expressions used when detecting a burnout event for a
Stage definition within the Stages section.

I ApplyWhen expressions used in any rule definition within the
MissionRules section.

I FireWhen expressions used in any Terminate class rule definition
within the MissionRules section.

I SafeTerminateRulesWhen expressions used in any Safing class
rule definition within the MissionRules section.

Jeffrey Cherry & Cass Russett CASS OR Comparison 18 / 47

CASS Operational Release 2 (OR2)

Known Error
When a mission rule references the same table multiple times, the first reference to the table will
produce correct results while subsequent references to the same table may produce invalid
results.

Outcome
Create duplicate tables rather than use the same table multiple times. SLD 30 can provide
corrected code on request, but recertification of the revised CASS Flight Software is the
responsibility of the user.

Jeffrey Cherry & Cass Russett CASS OR Comparison 19 / 47

CASS Operational Release 2 (OR2)

Known Error
CASS OR2 Flight Software incorrectly computes tracking sensor variable NoValidDataTime
such that it does not fully comply with requirement SRS-CASS-0949 and incorrectly computes
tracking sensor variable isValidSensorData such that it does not fully comply with requirement
SRS-CASS-1075. Affects Mission Rule expressions referencing either variable and any
subsequent operations that depend on those expression’s result.

Outcome
Work-Around: Use alternative logic in Mission Rules to replicate the per requirement content
for both isValidSensorData and NoValidDataTime values. Alternatively, use isGoodSensorData
flag instead of isValidSensorData flag and use NoGoodDataTime value instead of
NoValidDataTime value. SLD 30 can provide corrected code on request, but recertification of
the revised CASS Flight Software is the responsibility of the user.

Jeffrey Cherry & Cass Russett CASS OR Comparison 20 / 47

CASS Operational Release 2 (OR2)

Known Error
Gate Rules are templates expanded over a set of tracking sensors. The Gate Rule detects when a
reference point (i.e., the tracking sensor’s vehicle subpoint or its estimated impact point) moves
through a gate. Due to a logic inconsistency in the CASS Flight Software gate processing code,
a gate crossing may go undetected in rare circumstances.

Outcome
The effect of this error can only be realized in extraordinarily rare circumstances when a reference
point projects on the downrange side of the gate line and is within a small error tolerance (e.g.,
50 millimeters) of the gate line. Should this unique error occur, severity depends on the Mission
Rules. In a worst case scenario, not detecting a gate crossing may lead to an inadvertent
termination of a good vehicle or the inability to terminate a vehicle flying dangerously.

Jeffrey Cherry & Cass Russett CASS OR Comparison 21 / 47

CASS Operational Release 2 (OR2)
CASS OR2 Flight Software Highlights

Original release was certified in August 2018.
Original release is 16,201 Source Lines Of Code (SLOC).
Conforms to C++ 2003 and C++ 2011 language standards.
Static gates and dynamic boundaries.
Template rules added to rsoML and Mission Rules XML files.
Complete voting system (quorum, abstain, inquorate options, tie resolution).
Voting operations are restricted to event detection and commands.
Extensible commands using either immediate or stair-step algorithms.
New rules section for detecting staging events (thrust/burnout pairs).
Event detection, commands, and rules are logically separated.
Memory run-time requirement drastically reduced.
Reference frames apply to each tracking sensor.
Data interface and wrapper API separated.
New per-tracking-sensor data items.

Jeffrey Cherry & Cass Russett CASS OR Comparison 22 / 47

CASS Operational Release 2 (OR2)

Static Gates
Moving gates in OR1 were used to implement Chevrons.
Moving gate algorithm found to contain vulnerabilities.
Moving gate extension dropped; only static gates are allowed in OR2.

Dynamic Boundaries
User-defined table functions used to compute boundary vertex movement.
Not all boundary vertices need to move. User can define which boundary vertices
are static and which boundary vertices move.
Supports Chevrons (expanding boundary) or landing (collapsing boundary).

Jeffrey Cherry & Cass Russett CASS OR Comparison 23 / 47

CASS Operational Release 2 (OR2)

Template Rules and Complete Voting System
Simplifies rule writing and reduces rule set complexity compared to OR1.

I Reduced number of rules to write by 1/n, where n is the number of
user-defined tracking sensors.

I Need for generic “voting” rules eliminated by complete voting system, further
reducing the number of rules to write.

Rule “template” is replicated for each user-defined tracking sensor.
I Subset element allows user to specify a restricted set of tracking sensors.

Rule reference points are limited to either vehicle subpoint or predicted impact
point for a tracking sensor.
Tracking sensor field names are used instead of qualified field names.

I latIP rather than GPS_A.latIP, for example.

Jeffrey Cherry & Cass Russett CASS OR Comparison 24 / 47

CASS Operational Release 2 (OR2)

Template Rules and Complete Voting System (Continued)
Syntax of rules optimized for voting.

I Optional ApplyWhen expression replaced with required InvalidWhen
expression. InvalidWhen expressions evaluating to true indicate the rule
will abstain from a vote.

I Optional FireWhen and SafeTerminateRulesWhen expressions replaced with
required Result expression. Result expression outcome used as ballot for a
vote.

Vote operators used for detecting events based on multiple inputs.
I Thrust event detection using IgnitionLogic and BurnoutLogic expressions.
I Detecting command state changes using CommandWhen expressions.
I Decision expressions may use <and/> or <or/> operators and

<cond> …</cond> elements in addition to the <vote> operator.

Vote operator arguments are template or non-template
rule names ⇒ rules vote on decisions.

Jeffrey Cherry & Cass Russett CASS OR Comparison 25 / 47

CASS Operational Release 2 (OR2)

Template Rules and Complete Voting System (Continued)
Complete voting system.

I Ballots are the Boolean value from a rule’s Result expression outcome.
I Vote operator outcome is a Boolean value.
I Three non-abstaining rules define a quorum.
I Rule abstains when rule’s InvalidWhen expression outcome is true.
I Attributes of vote operator define behavior when vote lacks a quorum

(i.e., inquorate vote) or the vote is tied.
Attribute Name Description Values

zero Vote outcome when all rules abstain. true, false
one Vote outcome for one non-abstaining rule. true, false, ballot-result
two Vote outcome for two non-abstaining rules. true, false, or, and
tie Vote output for a tie vote. true, false

Jeffrey Cherry & Cass Russett CASS OR Comparison 26 / 47

CASS Operational Release 2 (OR2)

Commands
New Commands section of Mission Rules XML file. Used to define each Command.
New commands must be supported by AFTU developer.
Each command can move from one state to the next, where the first state is COMMAND_OFF.
Movement from one state to the next is controlled by a CommandWhen expression.

Two state-based command “algorithms” available:
I Immediate command: Once CommandWhen expression evaluates to true, the

command transitions from the COMMAND_OFF state to the COMMAND_ACTIVATE state
and latches. Emulates a “Safing” command from OR1.

I Stair Step command: When CommandWhen expression evaluates to true, the
command transitions along the path
COMMAND_OFF → COMMAND_READY → COMMAND_ACTIVATE.
State transitions are reversible when CommandWhen expression evaluates to false;
COMMAND_ACTIVATE → COMMAND_READY → COMMAND_OFF.
Emulates a “Terminate” command from OR1.

Jeffrey Cherry & Cass Russett CASS OR Comparison 27 / 47

CASS Operational Release 2 (OR2)

Commands (Continued)
Each Stair Step command manages an ActivateSignal time duration value. It is
incremented by the Update cycle rate (i.e., database parameter SamplePeriod) for each
Update cycle the CommandWhen expression evaluates to true, and decremented by the
Update cycle rate each time the CommandWhen expression evaluates to false.
Each command using a Stair Step algorithm manages the following timing parameters.
These parameters were global in OR1. In OR2, these parameters are bound to a specific
command and independent of any other command.

I TimeToReady – The time for ActivateSignal to transition
COMMAND_OFF → COMMAND_READY or
COMMAND_READY → COMMAND_OFF.

I TimeToActivate – The time for ActivateSignal to transition
COMMAND_READY → COMMAND_ACTIVATE or
COMMAND_ACTIVATE → COMMAND_READY.

I TimeCap – The the upper bound for ActivateSignal,
which is restricted to the range [0.0, TimeCap].

I TimeSlop – The time tolerance for ActivateSignal.

Jeffrey Cherry & Cass Russett CASS OR Comparison 28 / 47

CASS Operational Release 2 (OR2)

New Stage Rules Section
New Rules subsection in the Stages section of the Mission Rules XML file.
Only template or non-template GenericRules allowed in the stage rules subsection.
Stage rules aid in writing decision expressions for staging events, i.e., IgnitionLogic and
BurnoutLogic expressions.

Rules Provide Data for Decisions
Rules are user-defined computations to generate data.
Decisions ascertain a course of action based on data.
OR1 conjoined rules (data generation) with flight termination and FTS disabling (i.e.,
safing) decisions. OR2 separates this unrelated associated between rules and decisions.
OR2 pools raw tracing sensor data, derived tracking sensor data (e.g., impact point
estimate), rule outcomes, and data based on previous decisions (e.g., time since ignition).
Decision expressions can be written based on this data pool.
Database information can be used directly in <cond> …</cond> elements
and rule outcomes can be used directly in <vote> operators, with voting policy
defined explicitly via <vote> operator attributes.

Jeffrey Cherry & Cass Russett CASS OR Comparison 29 / 47

CASS Operational Release 2 (OR2)
Reduced Memory Usage

General use of strings was removed for OR2.
Specific use of strings for reading MDL data, converting string-to-numeric representation,
and storing string constants (e.g., Mission name string, file revision string) was retained.
OR2 introduced proxies (unsigned 32-bit integers) to identify unique objects. OR1 used
unique string names for the same purpose.
Proxies use 4 bytes per identifier, OR1 strings use more than 50 bytes per string identifier.
Depending on Mission Rules size and complexity, OR2 run-time memory requirements
were reduced to half the memory requirement used by OR1 for an equivalent set of
Mission Rules.

Note
The MDL_Tool generates a proxy-name map file, in CSV format, for use by GSE to convert proxy
values to corresponding names from the Mission Rules. Proxy values were added to outgoing
messages in OR2 to identify the associated object. OR1 lacks the ability to identify the source
object’s name in the outgoing message.

Jeffrey Cherry & Cass Russett CASS OR Comparison 30 / 47

CASS Operational Release 2 (OR2)
Reference Frames

User-defined reference frames provide a means to simplify rule expressions when
measurement or threshold values are naturally expressed in a reference frame other than
the standard EFG reference frame.

- A position and velocity state can be transformed to a new reference frame when given the new frame’s origin
position and orientation relative to the standard EFG reference frame.

- Reference frames are frequently used to transform tracking sensor information to downrange and crossrange
coordinate systems.

OR2 transforms each tracking sensor’s state vector to projected position and velocity
parameters for each user-defined reference frame. In contrast, OR1 performed this
transformation for only oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly oneonly one selected tracking sensor’s state vector.
Transformed parameters for each user-defined reference frame are part of each tracking
sensor’s derived data and available for use in both template and non-template rules.
Tracking sensor position and velocity vectors are transformed to each reference frame.
Impact point position and velocity vectors are transformed to each reference frame.

New Per-Tracking-Sensor Data Items
Residual impact point height.
Impact point state data (position, velocity, and velocity magnitude).
Orbital energy.
Altitude rate.
Data flags with “valid” and “good” distinction.
Data refreshed flag.

Jeffrey Cherry & Cass Russett CASS OR Comparison 31 / 47

CASS Operational Release 2 (OR2)

Data Interface
In OR1, interface functions for read-only access to the CASS Flight Software database
were mixed in with the Master class, though they were unrelated to the Master class’
primary purpose of supporting the Safety function.
The database interface functions were moved into a separate Data_Interface class for
OR2, which reduced the number of functions defined in the Master class by half
(complexity reduction).
The Data_Interface class enhanced and expanded access to additional data items.

I Read-only access to the CASS Flight Software database based on proxy or
fast-access index.

I Access provided lists of Sensors, Boundaries, Tables, Reference Frames, Stages,
Commands, Stage Rules, and Mission Rules.

I Read-only access to boundary attributes and vertices.
I Access to boundary functions to determine if a reference point is interior or exterior

to the boundary and the distance of a reference point to the nearest boundary edge.
I Access to frame evaluation function that provides the frame data produced from

transforming a given position vector and velocity vector.
I Access to table attributes and table interpolation functions for both one-way and

two-way tables.
I Read-only access provided for the Update call counter.

Jeffrey Cherry & Cass Russett CASS OR Comparison 32 / 47

CASS Operational Release 3 (OR3)

Known Error
There is an unnecessary include directive in file Named_Object.cpp that pulls in the standard
library iostream header. The iostream library is not used by the Named_Object class nor any of
its descendant classes. Since the code does not use the iostream library, the effect is compiler
and linker dependent – some compilers and linkers may include the unused library code into the
final executable image while others my not. Regardless, the software has been verified compliant
with all requirements establishing that the unnecessary include directive has no effect on Flight
Software behavior.

Outcome
Since there is no effect on code behavior or performance, users may safely use the CASS OR3
Flight Software code base as is. The unnecessary directive will be removed from the code base if
an update or revision of the CASS OR3 Flight Software becomes necessary.

Jeffrey Cherry & Cass Russett CASS OR Comparison 33 / 47

CASS Operational Release 3 (OR3)

Known Error
When defining a stream in the Mission Rules, the Rules_Checksum() function is supposed to
insert the 16-bit unsigned integer checksum of the original Mission Rules XML file, but instead a
32-bit unsigned integer value is inserted into the stream. The effect is that each occurrence of
function Rules_Checksum() within a stream definition, increases the length of the stream by 2
bytes more than expected. If not accounted for, ground processing of the stream data will not
extract the checksum value correctly and all subsequent measurements will also be processed
incorrectly.

Outcome
The fault lies in the CASS OR3 Flight Software, though it has no effect on the software’s
functionality. Users may safely use the CASS OR3 Flight Software code base as is. A correction
will be scheduled for the next update of the CASS OR3 Flight Software. Till this occurs, users
should account for the extra bytes in the ground processing of the stream data.

Jeffrey Cherry & Cass Russett CASS OR Comparison 34 / 47

CASS Operational Release 3 (OR3)

Known Error
Gate Rules are templates expanded over a set of tracking sensors. The Gate Rule detects when a
reference point (i.e., the tracking sensor’s vehicle subpoint or its estimated impact point) moves
through a gate. Due to a logic inconsistency in the CASS Flight Software gate processing code,
a gate crossing may go undetected in rare circumstances.

Outcome
The effect of this error can only be realized in extraordinarily rare circumstances when a reference
point projects on the downrange side of the gate line and is within a small error tolerance (e.g.,
50 millimeters) of the gate line. Should this unique error occur, severity depends on the Mission
Rules. In a worst case scenario, not detecting a gate crossing may lead to an inadvertent
termination of a good vehicle or the inability to terminate a vehicle flying dangerously.

Jeffrey Cherry & Cass Russett CASS OR Comparison 35 / 47

CASS Operational Release 3 (OR3)

CASS OR3 Flight Software Highlights
Original release was certified in July 2022.
Original release is 28,786 Source Lines Of Code (SLOC).
Conforms to C++ 2003 and C++ 2011 language standards.
Selectable drag-corrected impact point estimate.

I Enabled (default) or disabled (vacuum impact only) via Mission Rules “Settings”.
I Drag-corrected impact point computations performed in user-defined regions.
I Drag-corrected algorithm parameters defined per user-defined region (tunable).
I Uses U.S. Atmospheric Model (1976) standard as built-in atmospheric model

or can be overridden per-region with a user-defined atmospheric model.
I Uses per-region user-defined wind models with day-of-launch wind data updates.
I User-defined drag models or user-defined ballistic coefficients.
I Switching drag models based on used-defined expressions (flight event dependent).

Enhanced computation capabilities.
I “Tables” section in rules replaced with “Compute” section.
I Allows copying one database entity’s value to another database variable.
I Uses function syntax to call user-defined table functions.
I Added user-defined three-way tables.
I Provides over 20 built-in-functions.

Jeffrey Cherry & Cass Russett CASS OR Comparison 36 / 47

CASS Operational Release 3 (OR3)
CASS OR3 Flight Software Highlights (Continued)

User-defined tracking sensor variables.
User-defined vehicle sensor data items.
Tracking sensor filters.
Removed “persist” attribute from expressions.
Improved dynamic boundary vertex movement computations.
Improved dynamic boundary definition syntax in Mission Rules.
Real-time boundary-dependent Green Time Rule.
New reference frame parameter.
Replaced 16-bit CRC with 32-bit CRC.

Other CASS OR3 Highlights
Tailored requirements based on RCC 319-19 rather than draft AFSPCMAN 91-712.
Tailored coding guidelines based on AUTOSAR (update of MISR C++:2008).
Includes new lessons-learned document:
Precautions when Writing Mission Rules for CASS-Based Systems.
Provides reference hash values (e.g., SHA256) of MDL file for use by wrapper.
Aids in ensuring data integrity over communication channels.

Jeffrey Cherry & Cass Russett CASS OR Comparison 37 / 47

CASS Operational Release 3 (OR3)
Drag-Corrected Impact Point (Drag IP)

NASA algorithm adapted for use in CASS OR3.
Provides a more realistic impact point estimate at the cost of processing time.
Drag IP computed when vehicle subpoint is within an atmospheric region,
otherwise vacuum IP is computed.
Any number of atmospheric regions can defined and are separately tuneable.
Drag IP can be disabled so vacuum IP is always used
=⇒ all other OR3 features available at an OR2 computational speed.

Uses U. S. Standard Atmosphere, 1976, U. S. Committee on Extension to the
Standard Atmosphere (COESA) or each atmospheric region can have a
user-defined atmospheric model.
User-defined wind models required for each atmospheric region. Supports replacing
wind model data for each atmospheric region on day of launch.
Requires a user-defined drag model, either a MACH/Cd table or subsonic and
supersonic Ballistic Coefficient pair.
Drag models can be switched based on user-defined expressions
utilizing flight event conditions.

Jeffrey Cherry & Cass Russett CASS OR Comparison 38 / 47

CASS Operational Release 3 (OR3)
Enhanced Computational Elements within Rules

“Tables” element within Rules replaced with “Compute” element.
List of “Table” elements replaced with list of “Assign” elements.

CASS OR2
<GenericRule id="My_Rule">

<Tables>
<Table idRef="TFLO_to_Chevron">

<XVariable> TFLO </XVariable>
<YVariable> velTotal </YVariable>
<OutVariable> time_chevron </OutVariable>

</Table>
</Tables>

.

.

.

CASS OR3
<GenericRule id="My_Rule">

<Compute>
<Assign id="time_chevron">

TFLO_to_Chevron(TFLO, velTotal)
</Assign>

</Compute>
.
.
.

“Assign” element uses a function-call syntax.
I Target variable for the assignment (i.e., time_chevron) is given as the “id” attribute

value in the “Assign” element. In OR2 it was the content text of the “OutVariable”
element.

I The table name (i.e., TFLO_to_Chevron) is used as the name of the function to be
called. In OR2 it was the value of the “idRef” attribute of the “Table” element.

I Inputs for the table (i.e., TFLO and velTotal) appear as arguments
passed to the function. In OR2 they were the content text of the
“XVariable” and “YVariable” elements.

Jeffrey Cherry & Cass Russett CASS OR Comparison 39 / 47

CASS Operational Release 3 (OR3)

Enhanced Computational Elements within Rules (Continued)
Math expression of “Assign” element can be any one of the following:

I A user-defined table with one, two, or three arguments.
(OR3 supports 3-way tables in addition to 1- and 2-way tables.)

I A literal value; integer, floating point, Boolean, or time.
I An existing name in the database; copy value in named database entity

to target.
I A built-in function name. Available functions:

- Absolute Value for integer or floating point arguments.
- Equivalence for integer, floating point, or time arguments.
- Sum for integer or floating point arguments.
- Difference for integer, floating point arguments, or time.
- Absolute Value for integer or floating point arguments.
- Product for integer or floating point arguments.
- Quotient for integer or floating point arguments.
- Maximum for integer or floating point arguments.
- Minimum for integer or floating point arguments.
- Euclidean norm for 3-element integer or floating point vector arguments.
- Great Circle distance between two point given in latitude and longitude.
- Euclidean distance between two 3-element EFG vector arguments.
- Angle between two 3-element EFG vector arguments.

Jeffrey Cherry & Cass Russett CASS OR Comparison 40 / 47

CASS Operational Release 3 (OR3)

User-Defined Tracking Sensor Variables
In “UserDefines” section, a constant or variable can be added to each tracking
sensor’s data set via the new “sensor” attribute. For example:
<Variable name="old_latIP" type="float" sensor="true"> LaunchIPlat </Variable>
<Variable name="old_lonIP" type="float" sensor="true"> LaunchIPlon </Variable>
<Variable name="IP_Cycle_Track" type="float" sensor="true"> 0.0 </Variable>
<Variable name="IP_Total_Track" type="float" sensor="true"> 0.0 </Variable>

Tracking sensor variables can be set within a rule using the “Compute” element.
<Compute>

<Assign id="IP_Total_Track"> distance(LaunchIPlat, LaunchIPlon, latIP, lonIP) </Assign>
<Assign id="IP_Cycle_Track"> distance(old_latIP, old_lonIP, latIP, lonIP) </Assign>
<Assign id="old_latIP"> latIP </Assign>
<Assign id="old_lonIP"> lonIP </Assign>

</Compute>

Tracking Sensor constants or variables can be referenced in template and
non-template Mission Rules.

Jeffrey Cherry & Cass Russett CASS OR Comparison 41 / 47

CASS Operational Release 3 (OR3)

Required User-Defined Vehicle Sensor
Consolidates all non-tracking sensor inputs into a generalized interface.
All vehicle sensor inputs are defined explicitly as part of the <Vehicle> sensor
definition within the <Sensors> section of the Mission Rules.
Vehicle inputs can be defined as integer, floating point, Boolean, or time.
Vehicle sensor inputs include current system time (time value), liftoff ’A’ state
(Boolean value), and listfoff ’B’ state (Boolean value), defined with the
<Required_Data> element.

- Eliminates need for Update_Liftoff_Switches function, which has been removed from OR3 code base.
- Eliminates need for passing the current system time to the Update function. Instead, Update function requires a

vehicle sensor object as its single argument.

Additional vehicle inputs can be defined with the <Additional_Data> element.
- Intent is to provide data such that flight events (e.g., ignition, burnout) are detected more accurately and timely.
- Wrapper and its hardware must be able to accept external vehicle data and store data items into the vehicle

sensor in the proper field.

Jeffrey Cherry & Cass Russett CASS OR Comparison 42 / 47

CASS Operational Release 3 (OR3)

Tracking Sensor Filters
Tracking sensor filters check state data: measurement time, position vector,
velocity vector.
Two filters available:

- Valid_Representation: Verifies state data contains valid representation of numeric data.
- Limit_Filter: In addition to verifying valid representation, verifies state data is within defined limits provided

by Mission Rules writer, as follows:
measurement time > Minimum_Time
position magnitude ≥ Minimum_Position
position magnitude ≤ Maximum_Position
velocity magnitude ≤ Maximum_Velocity

Filter result saved in Boolean flag passedFilterTest.
Allows custom filtering of each tracking sensor’s state data. Contrast with
realityCheck flag that checks each tracking sensor’s computed altitude, velocity
magnitude, and computed total acceleration against global limits defined in the
<Settings> section of Mission Rules.

Jeffrey Cherry & Cass Russett CASS OR Comparison 43 / 47

CASS Operational Release 3 (OR3)

Removed “persist” Attribute for Expressions
The “persist” attribute was intended to provide a filter for raw data transients,
when raw tracking sensor data was used in <ApplyWhen> (OR1) and
<InvalidWhen> (OR2) expressions.
Instead, the “persist” attribute is often used as a general delay factor.
Complicates rules and delays when rules have dependencies, i.e., one rule depends
on the results of a previous rule.
May incorrectly delay a response when used in <FireWhen> (OR1) or <Result>
(OR2) expressions.
Tracking sensor filter introduced in OR3 to mitigate certain types of transients.
Additional filters can be added to future OR3 updates to improve transient
detection.
Removing “persist” attribute removes complications of rule dependencies.
Delays for action response is more accurately handled via stair step
commands.

Jeffrey Cherry & Cass Russett CASS OR Comparison 44 / 47

CASS Operational Release 3 (OR3)
Dynamic Boundary Definitions and Computations

Dynamic boundary definitions are unified into a single section of OR3 Mission
Rules, <Boundaries> section.

- OR2 dynamic boundary definitions used two sections of the Mission Rules, <Tables> and <Boundaries>
sections; a convoluted definition.

- OR3 method provides better visualization of the dynamic boundary; a simple definition.
- OR3 method defines a group of static boundaries as a dynamic boundary, with a selector constant assigned to

each static boundary.

Run-time selector values are used to interpolate between static boundaries to
create a dynamic boundary in real-time.

- OR2 method forced the same global parameter to be used for all rules that referenced the dynamic boundary,
regardless of the tracking sensor used by the rule.

- OR3 method allows a global parameter to be used, to maintain OR2 capability.
- OR3 method allows a tracking sensor variable to be used; providing a sensor-specific capability.
- OR3 method allows a value computed from various data items; providing an adaptive capability.

New implementation is more efficient.
- OR2 method saves latitude and longitude for every vertex of every static boundary.

OR3 method saves none of the vertex latitudes or longitudes; a significant memory reduction.
- Both OR2 and OR3 depend on a unit vector for each boundary vertex.

- OR2 selects two bounding vertices then interpolates latitude and longitude of the dynamic
boundary’s vertex point, then computes interpolated vertex point’s unit vector.

- OR3 selects two bounding unit vectors and interpolates the angle between them
to directly compute the interpolated vertex point’s unit vector.

- OR3 implementation requires less memory and computes results faster.

Jeffrey Cherry & Cass Russett CASS OR Comparison 45 / 47

CASS Operational Release 3 (OR3)

Real-Time Boundary-Dependent Green Time Rule
Formal Green Time rule replaces “manual” green time rules.
Template rule. Computations are per-sensor.
When tracking sensor data is available, per sensor green time threshold is set
based on reference point (i.e., either vehicle subpoint or estimated impact point)
being within a green time boundary.
Multiple green time boundaries can be defined and searched based on a
user-defined sequence.
Green time thresholds are associated with each user-defined green time boundary.
Green time thresholds can be constants or computed values.
When no tracking sensor data is available, per sensor no data time is computed
from current system time and the sensor’s last valid data time.
Sensor’s no data time is compared to sensor’s green time threshold to determine if
green time has elapsed.
CommandWhen expression can vote to determine if a green time violation
has occurred.

Jeffrey Cherry & Cass Russett CASS OR Comparison 46 / 47

CASS Operational Release 3 (OR3)

Miscellaneous
New reference frame parameter, posElevation (look elevation angle).
Upgraded from 16-bit CRC to 32-bit CRC.
Upgraded from tailored AFSPCMAN 91-712 (2004 DRAFT standard) to
tailored RCC 319-19 (current RCC standard).
Upgraded from tailored MISRA C++ to certified compliance with tailored
AUTOSAR C++ coding guidelines.
New documentation Precautions when Writing Mission Rules for CASS-Based
Systems.

Jeffrey Cherry & Cass Russett CASS OR Comparison 47 / 47

	CASS OR1
	Vacuum Impact Point Algorithm Deficiency
	Longitude Bound Error Over Anti-Meridian
	Same Table Referenced Multiple Times
	Flight Software Highlights
	Wrapper Responsibilities
	Mission Rules File
	MissionRules Section of Mission Rules File
	Conditional Expressions

	CASS OR2
	Longitude Bound Error Over Anti-Meridian
	Noncompliance with requirements CASS-SRS-0949 and CASS-SRS-1075
	Inconsistency in Gate Rule Processing
	Flight Software Highlights
	Static Gates and Dynamic Boundaries
	Template Rules and Complete Voting System
	Extensible Commands
	Separation of Rules and Decisions
	Memory, Reference Frames, New Data Items, and Data Interface

	CASS OR3
	Unnecessary Include File
	Incorrect Stream Length
	Inconsistency in Gate Rule Processing
	Flight Software Highlights
	Drag-Corrected Impact Point Estimate
	Enhanced Computational Capabilities
	Sensor-Related Changes
	Persist Attribute Removed
	Dynamic Boundaries
	Real-Time Boundary-Dependent Green Time Rule
	Miscellaneous

